The dynamics of functioning investigating societal transitions with partial differential equations
نویسنده
چکیده
In this article a mathematical framework is introduced and explored for the study of processes in societal transitions. A transition is conceptualised as a fundamental shift in the functioning of a societal system. The framework views functioning as a real-valued field defined upon a real variable. The initial status quo prior to a transition is captured in a field called the regime and the alternative that possibly takes over is represented in a field called a niche. Think for example of a transition in an energy supply system, where the regime could be centrally produced, fossil fuel based energy supply and a niche decentralised renewable energy production. The article then proceeds to translate theoretical notions on the interactions and dynamics of regimes and niches from transition literature into the language of this framework. This is subsequently elaborated in some simple models and studied analytically or by means of computer simulation.
منابع مشابه
APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS IN STABILITY INDEX AND CRITICAL LENGTH IN AVALANCHE DYNAMICS
In this study, Stability analysis of snow slab which is under detonation has developed in the present model. The model has been studied by using the basic concepts of non-detonation model and concepts of underwater explosions with appropriate modifications to the present studies. The studies have also been extended to account the effect of critical length variations at the time of detonation an...
متن کاملSimulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملAPPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS IN SNOW MECHANICS
In the present work, failure of a snow slab is analyzed by accounting Normal mode criteria. The analysis has been extended to include residual stress into the model (in addition to body forces). Intensity of crack energy release rate, and displacement components have been derived and their values have been estimated. The obtained results have been compared with the existing snow slab failure mo...
متن کاملImproved Mathematical Model for Helicopters Flight Dynamics Applications
The purpose of this paper is concerned with the mathematical model development issues, necessary for a better prediction of dynamic responses of articulated rotor helicopters. The methodology is laid out based on mathematical model development for an articulated rotor helicopters, using the theories of aeroelastisity, finite element and the time domain compressible unsteady aerodynamics. The he...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational & Mathematical Organization Theory
دوره 14 شماره
صفحات -
تاریخ انتشار 2008